Metformin-induced energy deficiency leads to the inhibition of lipogenesis in prostate cancer cells

نویسندگان

  • Camille Loubière
  • Thomas Goiran
  • Kathiane Laurent
  • Zied Djabari
  • Jean-François Tanti
  • Frédéric Bost
چکیده

The deregulation of lipid metabolism is a hallmark of tumor cells, and elevated lipogenesis has been reported in prostate cancer. Metformin, a drug commonly prescribed for type II diabetes, displays antitumor properties. Here, we show that metformin inhibits lipogenesis in several prostate cancer cell lines. In LNCaP cells, this effect parallels the decrease of key lipogenic proteins: ACC (acetyl-CoA carboxylase), FASN (fatty acid synthase) and SREBP1c (sterol regulatory element binding protein-1c), whereas there is no modification in DU145 and PC3 cells. Despite the relatively high level of lipogenic proteins induced by the overexpression of a constitutively active form of SREBP1c or treatment with androgens, metformin is still able to inhibit lipogenesis. Metformin does not alter the concentration of malonyl-CoA (the fatty acid precursor), and it only slightly decreases the NADPH levels, which is a co-factor required for lipogenesis, in LNCaP. Finally, we show that the inhibitory effect of metformin on lipogenesis is primarily due to a cellular energy deficit. Metformin decreases ATP in a dose-dependent manner, and this diminution is significantly correlated with the inhibition of lipogenesis in LNCaP and DU145. Indeed, the effect of metformin is linked to changes in the ATP content rather than the regulation of protein expression. Our results describe a new mechanism of action for metformin on prostate cancer metabolism.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

In-vitro Synergistic Effect of Metformin and Berberine on High Glucose-induced Lipogenesis

Metformin and berberine have been reported to have lipid lowering effects. This study aims to investigate lipid lowering effects of berberine and metformin, alone and in combination, in HepG2 cells to determine whether berberine and metformin work synergistically and elucidate their mechanisms. HepG2 cells were treated with 33 mM glucose in the presence of various concentrations of berberine an...

متن کامل

In-vitro Synergistic Effect of Metformin and Berberine on High Glucose-induced Lipogenesis

Metformin and berberine have been reported to have lipid lowering effects. This study aims to investigate lipid lowering effects of berberine and metformin, alone and in combination, in HepG2 cells to determine whether berberine and metformin work synergistically and elucidate their mechanisms. HepG2 cells were treated with 33 mM glucose in the presence of various concentrations of berberine an...

متن کامل

Salicylate activates AMPK and synergizes with metformin to reduce the survival of prostate and lung cancer cells ex vivo through inhibition of de novo lipogenesis.

Aspirin, the pro-drug of salicylate, is associated with reduced incidence of death from cancers of the colon, lung and prostate and is commonly prescribed in combination with metformin in individuals with type 2 diabetes. Salicylate activates the AMP-activated protein kinase (AMPK) by binding at the A-769662 drug binding site on the AMPK β1-subunit, a mechanism that is distinct from metformin w...

متن کامل

Targeting cancer cell metabolism: the combination of metformin and 2-deoxyglucose induces p53-dependent apoptosis in prostate cancer cells.

Targeting cancer cell metabolism is a new promising strategy to fight cancer. Metformin, a widely used antidiabetic agent, exerts antitumoral and antiproliferative action. In this study, the addition of metformin to 2-deoxyglucose (2DG) inhibited mitochondrial respiration and glycolysis in prostate cancer cells leading to a severe depletion in ATP. The combination of the two drugs was much more...

متن کامل

Radiosensitivity and Repair Kinetics of Gamma-Irradiated Leukocytes from Sporadic Prostate Cancer Patients and Healthy Individuals Assessed by Alkaline Comet Assay

Background: Impaired DNA repair mechanism is one of the main causes of tumor genesis. Study of intrinsic radiosensitivity of cancer patients in a non-target tissue (e.g. peripheral blood) might show the extent of DNA repair deficiency of cells in affected individuals and might be used a predictor of cancer predisposition. Methods: Initial radiation-induced DNA damage (ratio of Tail DNA/Head DN...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2015